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ABSTRACT Hypergeometric representations of classical
constants and efficient algorithms for their calculation are
discussed. Particular attention is devoted to algorithms for
computing wi.

The arithmetic nature of classical constants of analysis and
geometry is the main focus of transcendental number theory.
Typical questions include: are the constants irrational, tran-
scendental, algebraically independent? how well are they
approximated by rational numbers? what are the continued
fraction expansions of these numbers? Less often are ques-
tions posed about radix expansions of classical constants: are
these constants normal? do they resemble "random" digit
expansions in other ways? These problems were raised a long
time ago, and answers are important not only in number
theory but also in complexity theory, where the basic prob-
lem of randomness versus high complexity needs to be
understood in these crucial test cases. Among practical
applications one can mention the problem of reliable gener-
ation of the truly random sequences needed in many com-
putational, test, and communication applications.
These considerations provide the incentive for undertaking

multimillion digit computations of interesting classical con-
stants. Such high-precision computations are also needed for
other number theoretic applications such as continued frac-
tion expansions, where theoretical results are still inade-
quate. From the hardware point of view, multimillion digit
computations have been an accepted test of the viability and
integrity of computer systems since the first days of large
digital devices (von Neumann, Shanks). There is a race for
leadership in these computations, where the performance of
algorithms and supercomputers is measured in terms of
millions of digits of 7r computed using a given algorithm on a
given supercomputer. The first million digit mark was passed
in 1973 by Guilloud and Bonyer on a CDC 7600. The 2 million
mark was passed in 1981 by Miyoshi and Kanada and by
Guilloud. In 1982 Tamura and Kanada computed 4 million
and 8 million digits of vr. In 1983 Kanada and Tamura
computed about 16 million digits on a Hitachi S-810. Gosper
in 1985 computed more than 17 million digits of vr (and as
many terms in the continued fraction expansion of v) using
only a SYMBOLICS workstation. In early 1986 Bailey com-
puted about 30 million digits of r using a newly constructed
Cray 2. Then in 1987 Kanada computed 134 million digits on
a NEC SX-2 supercomputer. In 1988 Kanada raised this to
201 million, using a Hitachi supercomputer.

Algorithm development helped considerably in these com-
putations. One of the components was the fast multiplication
of long integers: if M(n) denotes the complexity of multipli-
cation of two n-digit integers, then the theoretical upper
bound M(n) = 0(nlognloglogn) (1, 2) is practically realizable
in "bignum" packages. While classical computation of ir and
other similar constants had complexity 0(n2) for the first n
digits, new algorithms were developed in the early 1970s that

reduced this to O(M(n)log2n) or even O(M(n)logn). Particu-
larly popular are Salamin-Brent algorithms for ir or e with
complexity of only O(M(n)logn), using Gauss' arithmetic-
geometric mean (agm) and Legendre's identity between
periods and quasi-periods of an arbitrary elliptic curve (3, 4).
Salamin algorithms and their generalizations (5) using elliptic
modular transformations were used by Kanada and by Bailey
(see ref. 5) in their record-breaking computations. Unfortu-
nately, fast agm algorithms are inherently floating point in
nature, so that error accumulations due to round-off are not
self-correcting. As a result, there is no independent means of
verifying the final result short of recomputing everything on
different hardware or comparing it with the result derived in
a different way. Gosper's computation was different in that
he used a generalized hypergeometric representation of a
multiple of vT derived by Ramanujan (6) as a part of his period
relation identities for singular moduli of elliptic curves (see
Eq. 2).

Since 1984 we have been interested in period relations and
their representation in terms of hypergeometric function
identities from the point of view of applications to diophan-
tine approximations to numbers such as ir, 7T/3,
Aided by the computer algebra system SCRATCHPAD, new
identities were discovered and used for diophantine approx-
imations (see ref. 7). These identities were generalized in
refs. 8 and 9 from elliptic curves to arbitrary CM-varieties, so
that a larger class of classical constants could be represented
through combination of values ofconvergent hypergeometric
series. Combining then fast convolution and long integer
multiplication algorithms (2) with fast power series tech-
niques (8), one can derive a relatively simple implementation
of high-precision calculations of classical constants adaptable
to any modern (super) computer. A series of such calcula-
tions was started by us at the end of 1988 on several machines
in a time-shared environment. By May 1989, on two ma-
chines of different architecture 480 million decimal digits of
X were computed using identity 1. These machines were the
Cray 2 at the Minnesota Supercomputer Center (Minneapo-
lis) and the IBM 3090-VF at the IBM T. J. Watson Research
Center (Yorktown Heights, NY).

Section 1. Hypergeometric Functions and Constants

Classical constants often arise from interesting classes of
functions. Among these many have an arithmetic nature, at
least in the sense that such functions are well defined and
convergent in both the archimedean (real or complex) and
nonarchimedian (p-adic) domains. In transcendental number
theory, solutions of linear differential equations with such
arithmetic properties were introduced by Siegel (10). Let a(,

,a,,. . . . be algebraic numbers such that all sizes ra,;j and
common denominators den {ao, . . . a,,} are bounded by C"
for some constant C > 1. Then the functionf(x) =
is called a G-function, and f(x) = X,,O(a,,/n!)x"1 is called an
E-function (10). It was proved in ref. 11 that linear differential
equations satisfied by G-functions have special geometric

Abbreviations: agm, arithmetic-geometric mean; FFT, fast Fourier
transform.
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properties: these differential equations are globally nilpotent.
(Among other things this means that all solutions of such
differential equations with algebraic initial conditions are
G-functions.) Moreover, on the basis of our results on the
Grothendieck conjecture (11) and extensive computer exper-
iments, we can support the conjecture that "all arithmetically
interesting differential equations came from geometry." This
means that any G-function satisfying a linear differential
equation over Q(x) can be expressed algebraically in terms of
solutions of Picard-Fuchs equations-combination of alge-
braic functions and periods of deformations of algebraic
varieties. There is a more precise expression for this conjec-
ture [Dwork-Siegel hypothesis (9, 10)]: all G-functions can be
expressed in terms of algebraic combinations of (integrals of)
generalized hypergeometric functions P+lFp. Though these
conjectures are unproved, in many specific cases one finds a
variety of expressions of classical constants arising from
arithmetic or geometry in terms of rapidly convergent gen-
eralized hypergeometric functions that are well suited for
high-precision numerical evaluation and for derivation of
diophantine approximations to these constants. Generalized
hypergeometric functions are usually defined as power series
whose consecutive coefficients satisfy rank one linear recur-
rence with coefficients that are rational functions of indices:

.nFn(tl.- - , Can; bi, . . . , bn; X) = E
N=O

in

H(ad)N
i=l
n

H(bj)N
j=l

xN
N!

(C)N= (C') ... (C + N -1).

Constants expressible in terms of values of generalized
hypergeometric functions can be called "rank two" con-
stants. Here is a very simple scheme for computing such
constants in terms of truncated generalized hypergeometric
series.
Algorithm I. Consider the following scheme of computa-

tion of (rational number representations of) truncated (gen-
eralized) hypergeometric series:

Pa 0A {A(O) O0 tA(N- 1) 0
Vb cJ VB(O) C(O) B(N - 1) C(N-1)

where A(-), B(-), C( ) E Z[ ] andf= b/a is the rational number
representing the N first terms in the generalized hypergeo-
metric series. Here c is the numerator of the Nth coefficient,
b is the numerator of the Nth order truncated series, and a is
the common denominator. Then the simplest way to compute
a, b, and c is the following:

tA(k) 0

Stage I (initialization). Put Mk = Vk k
for k = 0,

...BC-1.
Stage 2 (multiplication). Put Mk = M2.k X M2k+1 for k = 0,

. , [N/2] - 1, and Mk= MN-1 for k = (N - 1)/2 for odd
N.

Stage 3 (recursion). Put N = ceiling(N/2). If N > 1 go to
/aO

Stage 2, otherwise return M1.

While we recommend this algorithm for many practical
implementations, it is not necessarily the best in complexity.
More efficient schemes based on these principles are dis-
cussed in ref. 8 for evaluation of solutions of arbitrary linear
differential equations. Such schemes generalizing Algorithm
I often require an n x n matrix representation and can result
in larger storage requirements. Alternatively one can use,
instead of a power series, a continued fraction expansion with

partial fractions that are rational functions of the index. The
first study of these classes ofalgorithms and of the extensions
needed to compute continued fraction expansions of b/a
from the same scheme was that of Gosper (12).
Bounds on the complexity of Algorithm I and any of its

improvements depend considerably on the arithmetic prop-
erties of the corresponding generalized hypergeometric se-
ries. The worst case bound is the following.
PROPOSITION 1.1 The cost ofcomputation ofc/a in the tree

implementation of matrix multiplication

/a b N-1 /A(n) B(n)\

\c d n=O C(n) D(n)/

(for A(-), B(-), C(-), D(@)from Z[H]) is at most O(M(N) - log2(N
+ 1)). The cost is similarfor the computation ofN terms of
the continuedfraction expansion of c/a.
The proof of Proposition 1.1 is reduced to application of

Algorithm I, with summation of complexities of all O(log N)
applications of Stage 2 of this algorithm.
Complexity bounds on the computation of c/a in Propo-

sition 1.1 can be decreased if additional arithmetic conditions
on generalized hypergeometric functions are imposed. This is
the case for generalized hypergeometric E-functions. For
such functions the value of c/a of size H can be computed in
only O(M(H) llog H) primitive operations, following the
scheme of Algorithm L. For G-functions similar reductions in
complexity are possible, up to O(M(N)log N) complexity.

Section 2. Traditional Algorithms of Computation of Xr

The classical approach to computing IT uses the hypergeo-
metric function arctan. The most popular is Machin's formula
IT = 16 * arctan(1/5) - 4 arctan(1/239). Since simple methods
of multiplication were used in pre-fast Fourier transform
(FFT) days, the complexity of computation of N digits of X
was proportional to N2. If one substitutes fast multiplication
methods and uses Algorithm I for classical identities for xT,
the complexity drops in the worst case to O(M(N)log2N). In
the early 1970s faster algorithms were suggested, built around
computations on an elliptic curve rather than on a circle.
They reduced the complexity of computation ofN digits of 7r
to O(M(N)log N) (3, 4)

Salamin's Algorithm (3). Initialize ao = 1, bo = 1/\72, and
compute the agm: a,, = (a,,-1 + b,,-1)/2, b,, = (a,,-1 * b,,-1)1/2.
Put cr = a2 - b,2,. Then a,, and b,, converge to the same limit:
lim a,, = lim b,, = agm(ao, bo), and

IIT = 4 * agm(a(, bo)2/(1 - Y2n+1c"),

with partial results 7r,, = 4a,,+1/(1 - Xj;=_2j+lc-), approximat-
ing 7r with the order exp(-0(2"1+)).
For practical implementation of this scheme one should

add to the bignum package fast division and square roots of
arbitrary precision numbers. This is done, typically, with
Newton algorithms, and the complexity of these algorithms
on numbers with N digits is O(M(N)) (see ref. 4).

Salamin's algorithm and its modifications are made of two
ingredients: Gauss's agm algorithm ofcomputation of periods
and quasi-periods of an elliptic curve, and Legendre's iden-
tity for these periods and quasi-periods. In Legendre's no-
tation periods and quasi-periods of the elliptic curve (cubic)
Y2 = x * (x 1) - (X - k) with modulus A are denoted by K(A),
K(A'), and E(A), E(A'), respectively, for A' = 1 - A. They are
represented by hypergeometric functions K(A) = /2
2F1(1/2, 1/2; 1; A) and E(A) = 7r/2 * 2F,(-1/2, 1/2; 1; A). The
Legendre relation between periods and quasi-periods is
K(A) * E(A') + K(A') - E(A) - K(A) - K(A') = Er/2. Salamin's
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algorithm utilizes this identity at A = A' = 1/2 and uses Gauss'
agm algorithm to compute K and E. Higher order modular
relations are used to provide even faster convergent algo-
rithms (5). Unfortunately, a full precision of O(N) digits has
to be preserved at every step of the calculation (including
initialization) with extra 0(log N) guard digits.

Section 3. Period Relations and Complex Multiplications

As we have seen in Section 2, period and quasi-period
relations of arbitrary elliptic curves can be used for the fast
computation of T. Special elliptic curves can be used to
construct fast schemes of computation of Xr that can be
represented as hypergeometric identities. These elliptic
curves possess a complex multiplication, expressed in the
statement that the ratio oftwo periods is a quadratic algebraic
number. Ramanujan (6) proved that for any elliptic curve
with complex multiplication (for any singular modulus A),
there are two linear relations between periods and quasi-
periods (between K, K', E, E') with algebraic number
coefficients. Substituting these two linear relations into the
Legendre identity, Ramanujan arrived at the expression of an
algebraic multiple ofX as a quadratic function of a period and
a quasi-period-K(A) and E(A). Moreover, Ramanujan pre-
sented this quadratic period relation in terms of a single 3F2
function.
From Legendre representation of periods and quasi-

periods, one can derive several other representations in terms
of hypergeometric functions. There are four such classes
corresponding to four triangle subgroups: F(1), [(2), and
Hecke groups Gq, q = 4, 6 (see ref. 8). Ramanujan's quadratic
representations use (i) simple fractional transformations of
2F,-functions, (ii) a single quadratic relation valid for hyper-
geometric functions

2F1(2a, 2b; c - a - b; z) = 2F1(a, b; c - a - b; 4z(1 - z)),

and (iii) a Clausen identity

2F,(a, b; a + b + 1/2; z)2
= 3F2(2a, a + b, 2b; a + b + 1/2, 2a + 2b; z).

One can derive (7-9) all classes of quadratic period rela-
tions from the most general one for the modular invariant J
= J(r), using Eisenstein's series

2k 3

ET() = A n-E o-kn1 qn
Bk n~l

for O'kl(n) = Ydl,,dkl and q = e2 i. The standard theory of
complex multiplication states that for an arbitrary elliptic
curve over Q with complex multiplication by \/T-d and with
periods oil, W2:T = W0l/WO2 E H, all ratios E2,,(T):(wJ2/27ri)2" for
n > 1 are algebraic numbers. Ramanujan (6) proved a new
algebraicity statement for a nonholomorphic (Kronecker's)
version of E2(T) (13):
LEMMA 3.1. If T E Q(Vca), then the [(1)-invariant

nonholomorphic series

S2(r) f {E2(r) - 3/(7rIm(T))} * E4(T)/E6(r),

has an algebraic value (from a Hilbert class field Q(\/T7,
J(0r)).

Using Fricke's hypergeometric function representation of
periods (7) in terms of F(z) = 2F1(1/12, 5/12; 1; z), Lemma
3.1, and the Legendre identity, we obtain Ramanujan's

quadratic relation as the sum of products of rapidly conver-
gent 2F1 series representing 1/1r

F(123/J)2 1 (1 -s2(T)) + F(123/J)FZ(123/J) 7

j1/2

Q - 123)1/r22,fW
Here J = J(T), r = (-1 + \/cd)/2, d > 0, d-3(4). Here,
according to Lemma 3. 1, S2(T) is an algebraic number from a
real subfield of a Hilbert field Q(\/c-d, J(T)). Next, according
to the Weber-Heegner result, J1"3 and (J - 123)1/2/V7d are
(real) algebraic integers of degree h(-d). This means that for
a class 1 discriminant -d, all coefficients on the left-hand side
of the identity are rational numbers, while on the right-hand
side we have a rational multiplier of (-J)1/6/7r, where (-J)1/6
is a quadratic irrationality.
Now it is enough to apply a special case of the Clausen

identity

2F1(1/12, 5/12; 1; z)2 = 3F2(1/6, 5/6, 1/2; 1, 1; z).

This equation allows us to represent quadratic period rela-
tions in the 3F2- form
Oc1 ~ (6n) 1

n. {6\s2(Tf+n (3n)!n !3 J(T)n

( - J(T))112 1

IT (d(1728 -J(T))1/

here T = (1 + \/Cd)/2. The largest one class discriminant -d
= -163 gives the most rapidly convergent series among those
series where all numbers in the left side are rational:

Oc { } (6n)! (-1)E {cj + n} 3 3n=0 (3n)!n! (640,320)"

(640,320)3/2 1
= *~~~~~~~~-.[11
163 * 8 * 27 7 *11 * 19 * 127 ff

Here from Lemma 3.1, cl = 13,591,409/(163 * 2 * 9 * 7 .
11 * 19 * 127) and J((1 + \/ET6)/2) = -(640,320)3.
Ramanujan provides instead of this a variety of other

formulas connected mainly with the three other triangle
groups commensurable with [(1). The four classes of 3F,
hypergeometric functions (that are squares of 2FI-represen-
tations of complete elliptic integrals) are 3F2(1/2, 1/6, 5/6; 1,
1;x), 3F2(1/4,3/4,1/2;1, 1;x), 3F2(1/2, 1/2, 1/2;1, 1;x), and
3F2(1/3, 2/3, 1/2; 1, 1; x).

Representations similar to Eq. 1 can be derived for any of
these series for any singular modulus T E Q(\t-d) and for
any class number h(-d), thus extending Ramanujan's list (6)
ad infinum. Ramanujan's own favorite was

9801 2 (4n)
= > {11103 + 26,390n} n! ( 9)n

n=O ! 4 994n [21

which was used by Gosper in 1985 for the computation of
more than 17 million terms in the continued fraction (and
decimal) expansion of ff.
These rapidly convergent series were applied in ref. 7 to

obtain new measures of diophantine approximation to alge-
braic multiples of vT. Extensions of the theory of period
relations to multidimensional CM-varieties are given in ref. 8.
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Section 4. p-adic Period Congruences

In addition to archimedean period relations in the complex
multiplication case, there are corresponding nonarchimedean
(p-adic) relations reflecting the same modular numbers. One
such relation is the Koblitz-Gross formula giving a p-adic
interpretation of the Selberg-Chowla expression for periods
of elliptic curves with complex multiplication.

In applications to congruences satisfied by hypergeometric
approximations to multiples of 1/ir we need congruences
satisfied by truncated hypergeometric series that can be
interpreted through Hasse invariants and traces of Frobe-
nius. We briefly describe the background of congruences,
taking the Legendre model of elliptic curves

y2=x (x-1) * (x-A). [3]

Over finite fields there is a well-known relation between
Hasse invariants and mod p reduction of solutions of the
(Picard-Fuchs = Legendre) linear differential equation. Such
a relationship is very general and is derived using Serre's
duality. For elliptic curves in the Legendre form, mod p
interpretation is particularly easy. One reduces all coeffi-
cients ofthe power series expansion of 2F1(1/2, 1/2; 1; A)mod
p. In this way one arrives at a polynomial mod p known as the
Hasse-Deuring polynomial: HIp(A) = Emo()2Ai m d! (p

1)/2, of degree m in A.
LEMMA 4.1. The trace ap(A) of Frobenius of the elliptic

curve 3 over Fpfor A E Fp satisfies thefollowing congruence:

ap(A) (-1)m * Hp(A)mod p.

The number Np(A) of Fp-rational points on the elliptic curve

3 is

Np(A) 1 - (-1)m * Hp(A)mod p.

In the case when the curve 3 has complex multiplication in
the imaginary quadratic field K, the trace of Frobenius or the
value Hp(A) of the Hasse-Deuring polynomial has a variety of
arithmetic interpretations. Let us look at one-class fields K.
Half of the primes p are supersingular for the elliptic curve
3-i.e., Hp(A) =0 mod p. These are the primes p that stay
prime in K. For other good primes p, split in K, the trace of
Frobenius or HW(A) is explicitly determined from the repre-
sentation 4p = a2 + Db2 for the discriminant D of K.
With each of the four theories of Section 3 of hypergeo-

metric series representations of period relations we associate
congruences for values of truncated series. Congruences
depend on the order of truncation: if a few consecutive
coefficients in series are 0 mod M, all higher coefficients are
ignored mod M. This way one builds a "p-adic" interpreta-
tion of the Ramanujan identities without changing the left-
hand side (see ref. 14 for details).
We present the theory corresponding to the absolute

invariant J(T). The identity 1 can be written as

xC (6n)! 1 81
IC, + n} 3jn

7n=O (3n)!n!3 J" = It'

where c1 = (1 - s2(T))/6, (1 = V'-J/(d(123 - J))/2 for r =

(1 + d)12, J = J(r).
Now truncations of the 3F2-series in 1/J can be appropri-

ately determined mod p. We put

df {c1+n} (6n)!
N

n=O (3n) - n!3 jn'

THEOREM 4.2. For all good primes p,

N("- Omod p

for [p/6] N < p.
Here p is good ifp does not divide the denominator-i.e.,

p%J orp does not divide the denominator of c1. In Theorem
4.2 the bound on p can be replaced by [p/6] . N (mod p) <
P.
These congruences, particularly Theorem 4.2 for J =

-640,3203 can be used to verify schemes of computation of
ir, based on telescoping Algorithm I, or they can be used to
supplement Algorithm I by using the Chinese remainder
theorem.

Section 5. Algorithms and Implementation

For those who wish to run their own ir calculation, or to do
multimillion digit computations, and who have not written a
bignum package before, we describe briefly nontrivial parts
of the package. Whenever the word size of operands or the
result exceeds the word size of the machine, additional
programming is needed. Knuth (15) devotes considerable
attention to bignum programming. One should have different
routines for different ranges of numbers and for different
storage modes. Next, one should take full advantage of any
inherent parallelism of algorithms; e.g., in Algorithm I in the
early stages, many simultaneous and independent operations
take place. This way on vector machines there is always a
long vectorization length (across short-length operations on
early stages and inside long-length operations on later stages
of Algorithm I).
Bignum division and other elementary and nonelementary

operations are combinations of basic primitives: addition/
subtraction and bignum multiplication.
Most computational time is spent on bignum multiplica-

tion. Other than for relatively short numbers, the classical
method of multiplication should be avoided. A conventional
remedy is the use of FFT algorithms to speed up the convo-
lution of digits offactors from which the true digit ofthe result
is reconstructed. It is better to speak of fast convolution
algorithms rather than FFT because often the floating-point
FFT is less efficient than its modular versions or new fast
convolution algorithms. We refer to refs. 2 and 15 for
definitions of bilinear-form representations of fast convolu-
tion algorithms. In all these algorithms one looks at the
product C = A * B of two bignums written in the radix Rad:

n-i in-i
A = E A1 Rad', B = > B1 Rad'

i=O j=0

as the result of convolution of arrays (Ai) and (By). This result
of convolution (A) * (B) = (C), Ck = li+j=kAA - Bj, is com-
puted by using the bilinear-form algorithm

x= Hn A, Y =Hn *B. C = G z

for H,, E Mlxit, H. E Mlxm, and G E M(ni+n,)xI for Znr = Xa * Ya
for a = 1, . . ., l. Here l n + m - 1 is the rank of the
algorithm, and the whole algorithm consists of three stages:
transforming A and B, dot product of the transformed results
(Zn = x<a ye), and retransformation.

In the case of FFT-like algorithms of fast convolution,
matrices H,, H., and G are built from primitive roots of
unity: H,, = (w,'i), Hm = (w;1), G = (wE'i), and the resulting
array C is the circular convolution of length l:Ck =
7-i+jk(I)Aj * Bj. Usually, I is chosen to be a highly composite
number, In this case the complexity of performing FFT of
order I is 0(1 log 1) of primitive operations in any ring (S where
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I is invertible and where w1 is a primitive root of unity of order
l. The well-known Cooley-Tukey FFT corresponds to the
case I = 2' (see ref. 15). The condition on the ring (S3 where
the FFT is performed is the correct reconstruction of the
result Ck.
There are three choices for (M in practice: (i) the complex

number field (with the precision of operation high enough to
determine Ck. correctly taking into account the loss of 0(l log
l) digits of precision during the FFT computation), (ii)
products of finite fields having primitive roots of unity of
order I (e.g., for I = 2' finite fields Fp for primes p are of
special form with p = s * 21 + 1), with integers Ck recon-
structed by using the Chinese remainder theorem, and (iii)
surrogate polynomial or special modular rings such as
Z/Z * (22' + 1). A more general approach to fast modular and
integer convolution algorithms is described in ref. 2. These
algorithms use arbitrary algebraic curves and varieties and
represent all fast convolution algorithms as interpolation
algorithms of these varieties. Conventional algorithms arise
then as special cases corresponding to interpolation on a
projective line or circle. For practical implementation all
approaches mentioned above should be used, depending on
the length of the convolution.
Once a bignum package is in place, implementation of

Algorithm I for any hypergeometric function identity can
proceed. If congruences such as those of Section 4 are
available for verification of intermediate and final results,
they should be applied for "random" moduli (so that no bias
can occur). If no explicit congruences are found, it is still
important to have congruence checks of final results, inde-
pendent on local verifications. For this we suggest running
Algorithm I for a prescribed set of prime moduli, preferably
without any use of the bignum package. The set of modular
results can be used for verification of results in all stages. We
used several classes of prime moduli for these local verifi-
cations, to bring any local error to a probability below 10-29.

Section 6. Conclusions

The decimal (or other radix) expansion of a classical constant
attracts attention because of curiosity in detecting rules or
patterns hidden in the sequence of digits. The amount of data
generated during the computation of XT is barely enough to
determine statistical laws distinguishing decimal expansions
of classical numbers from random sequences and from each
other.
Among other applications of the calculation of 7r (and other

classical constants) are the determination of initial pieces of
continued fraction expansions, needed to determine mea-
sures of irrationality, and diophantine approximations in the
regions where analytic results are inadequate. This is needed

to remove large constants from results on measures of
irrationality for or, vr/\/0, ir/\72, . . . (see ref. 7).
As of July 1989 we had computed more than 1 billion

decimal digits of 7T.

Our own computations started in December 1988. For the com-
putation of or we used the scheme based on Eq. 1 with the matching
congruences of Section 4. Codes were prepared for Cray 2, IBM
3090-VF, and IBM GF11 supercomputers. The Cray 2 computations
proceeded at the Minnesota Supercomputer Center (MSC) in Min-
neapolis. Computations on the IBM 3090 were conducted at the IBM
T. J. Watson Research Center in Yorktown Heights, NY. Compu-
tations were conducted in a shared environment over a period of 8
months. All programming for the Cray 2 and IBM 3090 was in
FORTRAN, and all nontrivial parts of the code were fully vectorized.
The main focus during these computations was on verifiability of
results and preservation of correct data on various storage devices.
We are indebted to B. Rackner, who over many months fully shared
the burden of this computation. Our use of IBM SCRATCHPAD was
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